M-ERA.NET project “Metrology at the Nanoscale with Diamonds” (MyND) answers to the trans-national M-ERA.NET call of 2014 ( and corresponds to the project topic “Functional Materials Focusing on Sensors”.

The consortium consists of three partners:
1. Laser Center of the University of Latvia (coordinator, Latvia)
2. Center for Physical Sciences and Technology (Lithuania)
3. Institute of Solid State Physics (Latvia)

Duration of the project: 2015.10.01-2015.09.30

Lithuanian participants: dr. A. Alkauskas, M. Mackoit, L. Razinkovas.


The Magnetometry on the Nanoscale with Diamonds (MyND) project seeks to improve sensors based on nitrogen vacancy (NV) defect centres in diamonds by through new theoretical insights and by the application of novel techniques to magnetic field imaging. These insights will be subsequently applied to generating new knowledge about oxygen sensing and the behaviour of singlet oxygen in SiO2 matrices as well as to opening up a new window on research about the fluid- and magneto-dynamics of self-directed magnetic microdevices. The result of the project will be new scientific understanding of NV centre physics that will improve sensing, in particular of magnetic fields, but also of temperature and pressure. The knowledge gained has the potential to open new technologies (e.g., novel oxygen sensors) and improve other technological fields (e.g., manufacture of magnetic nanoparticles and development of self-propelled microdevices).


The project resulted in the following published peer-reviewed articles (Lithuanian participants are underlined):

1. Z. Shotan, H. Jayakumar, C. R. Considine, M. Mackoit, H. Fedder, J. Wrachtrup, A. Alkauskas, M. W. Doherty, V. M. Menon, and C. A. Meriles
Photo-induced modification of single-photon emitters in hexagonal boron nitride
ACS Photonics 3, 2490 (2016)

2. M. W. Doherty, C. A. Meriles, A. Alkauskas, H. Fedder, M. J. Sellars, and N. B. Manson
Towards a room-temperature spin quantum bus in diamond via optical spin injection, transport and detection
Phys. Rev. X 6, 041035 (2016)

3. H. Massana-Cid, F. Martinez-Pedrero, A. Cebers, and P. Tierno
Orientational dynamics of fluctuating dipolar particles assembled in a mesoscopic colloidal ribbon
Phys. Rev. E 96, 012607 (2017)

4. T. B. Biktagirov,  A. N. Smirnov, V. Yu. Davydov, M. W. Doherty, A. Alkauskas, B. C. Gibson, and V. A. Soltamov
Strain broadening of the 1042-nm zero-phonon line of the NV center in diamond: a promising spectroscopic tool for defect tomography
Phys. Rev. B 96, 075205 (2017)

5. A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, and L. C. Bassett
Optical signatures of quantum emitters in suspended hexagonal boron nitride
ACS Nano 11, 3328 (2017)

6. A. Trukhin and A. Antuzevics
Photoluminescence and electron spin resonance of silicon dioxide crystal with rutile structure
Phys. Status Solidi B 216, 1800457 (2018)

7. N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. W. Doherty, C. A. Meriles, and V. M. Menon
Near-deterministic activation of room temperature quantum emitters in hexagonal boron nitride
Optica 5, 1128 (2018)

8. E. Londero, G. Thiering, L. Razinkovas, A. Gali, and A. Alkauskas
Vibrational modes of negatively charged silicon-vacancy centers in diamond from ab initio calculations
Phys. Rev. B 98, 035306 (2018)

9. C. E. Dreyer, A. Alkauskas, J. L. Lyons, A. Janotti , and C. G. Van de Walle
First-principles calculations of point defects for quantum technologies
Annu. Rev. Mater. Res. 48, 1 (2018)

10. L. Weston, D. Wickramaratne, M. Mackoit, A. Alkauskas, and C. G. Van de Walle
Native point defects and impurities in hexagonal boron nitride
Phys. Rev. B 97, 214104 (2018)

11. L. Skuja, K. Šmits, A. Trukhin, F. Gahbauer, R. Ferber, M. Auziņš, L. Bušaitė, L. Razinkovas, M. Mackoit-Sinkevičienė, and A. Alkauskas
Dynamics of singlet molecular oxygen trapped in silica glass, studied by luminescence polarization anisotropy and density functional theory
J. Phys. Chem. C 124, 7244 (2020)